
Geometrical approach to On line Trajectory generation, Obstacle
avoidance and Footstep planning for a Humanoid Robot

Kaustubh Nawade1 V. Aditya2 Apoorv Shrivastava3 B. K. Rout4

Abstract— This paper presents a unique real time technique
for path generation in dynamic environment using simple
geometry, suitable for humanoid robots. We show that the
proposed algorithm reduces computation to find the optimal
collision free path by utilizing the geometrical shapes of the
obstacles to navigate from a known initial point to final point.
The trajectory is then translated to known parameters of
humanoid gait model thus effectively computing the footsteps
for the robot. This algorithm has been simulated, implemented
and tested on humanoid robot AcYut, developed at Centre for
Robotics and Intelligence Systems, BITS-Pilani.

Index Terms— Motion and Trajectory Generation, Humanoid
Robots, Humanoid and Bipedal Locomotion, RoboCup

I. INTRODUCTION

A basic skill in autonomous systems is the ability to reach
a desired location by making collision free paths. Many path
finding algorithms have been designed till date to address
this issue. Once a path is made it is then mapped to the
gait target vector of the humanoid robot and footsteps are
planned accordingly.
Since many situations encountered in real world scenario
are dynamic, it is essential that the algorithm for such
calculations should be robust and computationally minimal-
istic. Moreover the challenge further increases due to the
limited capabilities of the robot’s sensors and their noise, thus
limiting its ability to perceive the environment accurately.
The usage scenario for our case is humanoid robot soccer
at RoboCup. In this paper we try to address one of the
most primary higher level tasks. Once the ball position is
known and the robot is localized in the environment, the
most important challenge is to find the smallest trajectory
from the current position to the ball avoiding opponents and
the team members in the way. Once the path is known it is
then simply mapped to gait generation algorithm and the bot
follows the steps planned for it.
However many path planning algorithms have high time and
space complexity due to the formation and computation of
grid-based operations. In our case we can take advantage of
the fact that obstacles sizes are comparable to that of the
robot itself and there are very few obstacles present on the
way to the ball. The algorithm in this paper minimizes this
cost and is capable of finding the most optimum path even

1B.E. (Hons.) Electrical & Electronics & M.Sc. (Hons.) Physics Under-
graduate, BITS - Pilani kaustubh.nawade@gmail.com

2B.E. (Hons.) Computer Science Undergraduate, BITS - Pilani
42vaditya@gmail.com

3B.E. (Hons.) Mechanical, BITS - Pilani apoorvs92@gmail.com
3Associate Professor, Dept. of Mech. Engg., BITS - Pilani

rout@pilani.bits-pilani.ac.in

for a large number of obstacles. To give a comprehensive
solution we also try to address the issue of mapping the
planned trajectory to the humanoid robot’s gait generation
module, i.e. footstep planning.
The initial section of the paper reviews the existing literature
on path planning and various current algorithms that can be
used in such scenario. The subsequent sections describe a
geometry based approach to path planning and discusses the
algorithm in detail. We then discuss the mapping of this path
to the gait of the humanoid robot which uses 3D-LIPM as
the walking pattern generator. Last few sections show the
details of the tests and comparison of the algorithm with a
few existing ones to conclude the paper.

II. RELATED WORK

The problem of motion planning in the existing literature
can be broadly categorized into two primary alternatives
based on the method of computation of a trajectory. While
one focuses on directly computing footstep location based on
certain heuristic [1][2], the other focuses on path planning
and then mapping gait motion to the generated path. In this
paper we focus on the latter as it cleanly decouples the
method into two computationally less expensive methods.
In Robocup the world scenario is known and the environment
is dynamic, i.e. obstacles are moving. Hence it is not
important that the path calculated should be correct at all
iterations. The system can accept a less optimal solution
once in a few frames as long as it is fast. Thus the key
challenge in motion planning algorithms is to achieve the
computational complexity to sustain real time planning and
execution. Lina Ourima [3] explored a path planning ap-
proach based on geometry using polygon and Beizer curves.
This approach was used in the Robocup small size league
by FU-Fighter’s. Bennewitz and Burgard[4] search for an
optimal path using grids and A* algorithm. For a multi-
robot system it resolves conflicts between moving robots.
However such search algorithms based on grid compromise
on resolution for computation. An alternative solution to this
problem was given by Ricards Steffens[5] exploring multi-
resolution path planning for dynamic environments. Other
common approaches used by many teams is that of Artificial
Potential Mapping[6]. This work treats obstacles and test bot
as positive point charges and then finds the most optimum
path to the negatively charged final position, based on field
potential in the neighborhood. Though this algorithm can
give high frame rates due to low complexity it lags to due
to problems in local minima and the path final path is not
very smooth. D* Lite[7] is also a widely followed approach

behnke
Schreibmaschine
The 10th Workshop on Humanoid Soccer Robots15th IEEE-RAS International Conference on Humanoid Robots, Seoul, Korea, November 2015



for dynamic path planning.
A comprehensive solution to tiered motion planning specifi-
cally for bipedal robots is discussed by Joel Chestnut[8]. The
approach begins making a simple path and generates paths
of higher complexity till it satisfies the desired criteria, also
accounting for stepping over obstacles along the way. A map-
ping from gait velocity to footstep location has been detailed
in [9] by Andreas Schmitz of Team Nimbro, Robocup Teen
size league. In this paper we design a position controller as
greater accuracy is achieved by directly transforming path to
footstep locations, instead of feeding gait velocities which
would then be transformed into footstep locations.
The driving intent behind this paper is to make a comprehen-
sive motion model system which can work in real time. The
idea of path planning and footstep planning is outlined in
such a way that it can be easily ported to another humanoid
system without having to make any low level changes.

III. ROBOT TEST PLATFORM

The implementation and testing of the algorithm is carried
out on a humanoid AcYut developed in India. The humanoid
has been used in the recent versions of Robocup tournament
and has 24 degrees of freedom. The environment is perceived
by a IDS UI-1221LE fish eye lens at 74 fps. The humanoid is
equipped with an onboard x86 Intel Atom processor running
at 1.8 GHz.

IV. METHODOLOGY

A. Usage Scenario

For a robot soccer game in the humanoid teen size league
at RoboCup each team has two autonomous robots. Each bot
is around 20 cm in diameter and around 100 cm in height.
The field is 9m X 6m and a vision sensor is mounted on top
of the robot.
In the test robot platform, a fish eye lens is used since it
gives a wide field of vision. Thus in one frame the two
opponent bots, one team member bot, referee, robot handlers
are perceived, and designated as obstacles and the path to
the ball has to be navigated around them. The obstacles and
the ball are moving in real time and hence the path to be
computed also needs to be dynamic and updated almost every
second for an accurate path. Moreover, the data computed by
localization is not accurate, neither are the steps followed by
the robot on the path generated.

B. Algorithm

In this approach of geometric path planning all obstacles
are represented as circles. In the implementation discussed
in this paper we treat them as circles since complex rep-
resentation of the shape of the obstacles is neither useful
nor trivial for the current problem specification. This is a
valid assumption as the obstacles are humanoids which can
be generalized to a circular projection on the 2D surface. A
graph called the visibility graph[12] is constructed between
the start and end point where the nodes are points on the
obstacles and the best path is calculated accordingly as per
cost. There is an edge connecting the two nodes only if the

edge is not intersecting or cutting any other circle. In the
event of an intersection, the nodes are connected between the
two polygons and the intersecting polygon. Connect implies
adding cost for the Edges (E) that connect the Vertex (V )
as per the Euclidean distances between them.

Algorithm 1 Calculate Visibility Adjacency Graph G

1: Initialize a = Start Point, b = End Point
2: Connect a and b by a straight line
3: procedure VISIBILITYGRAPH(a, b)
4: Connect a and b in G
5: if Line Intersects an Obstacle then
6: Tangents from a and b to the first obstacle

encountered o, at o1, o2, o3, o4
7: Disconnect a and b in G
8: Connect o1 with o3 and o2 with o4 in G
9: for i← o1 and o2 do

10: Connect a and i in G
11: VisibilityGraph(a, i)
12: end for
13: for i← o3 and o4 do
14: Connect i and b in G
15: VisibilityGraph(i, b)
16: end for
17: end if
18: end procedure

If a common tangent to the two circles intersects a circle
then common tangents are drawn to this new intersecting
circle. This process is repeated until we have the entire
visibility graph, connecting the start and end point as shown
step by step in Algorithm 1. The function of Visibility Graph
is called recursively on each of the edge joining two nodes.
Thus the number of points in the graph depends on the
number of obstacles present on the field which usually vary
from 3 to a maximum of 5 including possible erroneous
cases. To calculate the final trajectory the least cost is found
for a path connecting the start and the end point. The entire
algorithm is diagrammatically represented in Fig. 1.
Now, to find the shortest path between the start and end
point, the shortest cost between them in the Visibility Graph
must be found. For this purpose Dijkstra’s Algorithm[10] is
used as it is asymptotically the fastest known single source
shortest path algorithm for arbitrary directed graphs with
unbounded non-negative weights. Any other graph search
algorithm can also be used in this case.

C. Orientation Circles

Joining the line between the start and end points is not
sufficient to give complete path between the two points. It
is often required that the bot face a particular direction once
it reaches the destination. In this scenario, the humanoid
is required to reach the ball, dribble or kick ball towards
the goal posts ensure that it does not shoot in the wrong
direction. One alternative is to reach the final point and
then orient correctly, which leads to dependency on side



Fig. 1: (a)Start point A and End Point B hindered by two obstacles (b) Drawing tangents to the first obstacle encountered
at T1, T2, T3 and T4. (c) Recursively following the same function. Final path as shown in red.

walk in a circle. A more efficient solution would be to
consider the correct orientation in the path itself such that
when the bot reaches the final point it finds itself oriented
in a correct manner. This can be done by simple addition
of dummy obstacles of required radius orthogonal to the
facing direction, and choosing the final path intelligently.
The diagrammatic representation is as shown in the figure 2.

Another use of introduction of dummy obstacles is to start
the tracing of the path smoothly. It often happens that the bot
is facing a direction and need to start walking at a specified
angle to the current gait vector. Since instantaneous turning
of the point can prove to be difficulty or time consuming an
obstacle can be placed to ensure smooth transition.

Fig. 2: Use of orientation circle or dummy obstacles to align the
robot correctly. The robot starts from point A, navigates it way
around the obstacles O1 and O2, to reach the point B facing the
direction G.

D. Edge Cases and Erroneous Inputs

Since the algorithm is dynamic some cases will arise when
the robot, obstacle, ball all are very near, especially when

Fig. 3: Dealing with intersection of obstacles due to erroneous
inputs.

the bot is progressively reaching its target. In such cases due
to erroneous inputs from the camera, sometimes the bot or
end point can be found inside the obstacle itself, making
it impossible to draw tangents. Such cases are ignored and
since the algorithm is run with a frame rate as high as 50
fps these instances do not matter much and are taken care
of in the subsequent frames.
Other cases include when obstacles intersect. This may be
because of the erroneous inputs if obstacles are behind one
another or because of the generic assumption that obstacles
all have the same radius. The fact that obstacle radius is its
radius added with the half of radius of the bot itself ensures
that the test subject can easily maneuver between obstacles.
To solve this problem any two such intersecting obstacles are
treated as one obstacle, by making a best fitting ellipse on
top of the obstacles. The algorithm can be executed normally
considering this new ellipse.

E. Hierarchical Controller

The hierarchical motion controller implemented on the
humanoid is presented below for providing a clear picture
of the step planning interface. The placement of the footstep



planning interface in the behavioral chain of events is be-
tween the path planning algorithm and the high-level position
controller of the humanoid gait generation module. The
controller is hierarchically structured into three components:
A) Position Control Module
B) Gait Generation Module
C) Inverse Kinematics Module

The salient features of the modules are discussed below:
A) A high level 3 Dimensional step position S is supplied

to the gait generation controller. S is defined as:
S ∈ (Z, Y, θ)

where Z and Y are the lateral and sagittal displacements
of the free leg with respect to the current 2 dimensional
projection of the CoM on the ground. θ describes the
rotation of the foot with respect to the present orientation
of the humanoid.
The step planning interface is responsible for generating
acceptable step positions which obey the theoretical con-
straints of the gait controller and the physical constraints
of the humanoid, and the specific implementation of such
an interface is discussed in the next subsection.
S is presented to the Gait Generation Module as a
commanded target position at the end of the step.

B) The S vector is used to parameterize the gait generation
algorithms of the feet of the humanoid. In a 3D-LIPM
gait, the current position and velocity being known, the
support leg trajectories are predetermined. The S vector
is used to compute the trajectories of the free leg of the
humanoid.

The reason for such a hierarchical structure is that it
allows changes at each tier without requiring changes to
the other tiers. For instance, the IK module can be adapted
for a humanoid robot with a different mechanical struc-
ture, without having to change the gait generation module.
However, the step planning interface must be designed to
generate acceptable step positions and may require changes
depending on the gait generation algorithm being used and
the mechanical limitations of the humanoid.

F. Step Planning Interface

The step planning interface decomposes the path into
discrete footsteps which result in the robot following the
desired trajectory.

The path is first broken down into two components:
• Straight Line Path
• Circular Path
When the designated trajectory is a straight line, the robot

accelerates to its maximum velocity and footstep vectors
are generated for the maximum velocity until the distance
covered by the robot is equivalent to the straight line length.

When the trajectory is circular, the step planning interface
generates footstep vectors using the radius of the circle and
the separation of the feet. Each step advances the angle
turned by the θ component of the step vector. When the target
turning angle is achieved, the robot will have traversed the
circular arc with the desired turning radius. It is not possible

to have a constant velocity when navigating a circular path,
because the steps taken by the foot on the inner side of the
circle are shorter than the outer foot. Therefore, the velocity
stabilizes by oscillating between two different values.
The transition between a straight line trajectory to a circular
one and vice versa must be handled smoothly since at any
frame the new path generated may possess a straight line
or a circle. Given the present velocity and step location, the
interface must generate stable transition of velocity to adapt
to the new trajectory. This situation is accommodated by
allowing a margin of one or two steps to transition safely to
the new trajectory. The inaccuracy introduced by this margin
is negligible due to the high step frequency of the robot.

The step planning interface needs to be constrained in
some manner to prevent drastic sudden changes in the
velocity of the humanoid. Since the robot is presented with
an online path planner, the robot may be asked to accomodate
changes in path radius at each step. In this humanoid, the
constraints are derived from a reformulation of the standard
3D LIPM equations:

3D Linear Inverted Pendulum Model describes the motion
of the Centre of Mass (CoM) in the robot[12]. The motion
of support leg is opposite of the CoM, since the support
leg behaves as a pivot which moves the CoM of the robot.
Therefore the 3D LIPM algorithm can be used to develop
a relation between step lengths and CoM velocities. The
motion of the robot’s supporting leg is defined by the x-
variable in the Eq 1. Tc and Ts are constants, Ts being the
SSP time of the robot. Tc is the time constant of the inverted
pendulum, and is computed using the physical dimensions of
the humanoid followed by experimental tuning. The initial
and final states of the bot (before and after the step) are
represented by i and f. Velocity and position are denoted by
v and x.

 xf

vf

 =


cosh

(
Ts

Tc

)
Tc sinh

(
Ts

Tc

)
sinh(Ts

Tc
)

Tc
cosh

(
Ts

Tc

)

 xi

vi


(1)

Since the step planner only observes discrete footsteps
and not any arbitrary moment in time, the Ts is treated as
the constant end-of-step time, instead of the variable time t.
During trajectory generation the variable Ts is replaced by
current step time t, which reaches the value Ts at the end of
the step.

The above equations are reformulated as:

xf = A sinh (Ts/Tc + φ) (2)

vf = A cosh (Ts/Tc + φ) (3)

where,

A = vi

√
T 2
c −

(
xi
Tc

)2

(4)

φ = sinh−1
(xi
A

)
(5)



This reformulation represents a loss in generality and
also introduces certain constraints on the maximum and
minimum future velocity relative to the present velocity. The
reformulation is carried out for the purpose of deriving these
constraints, thereby restraining the motion of the humanoid
by preventing it from drastic changes in velocity. The stan-
dard LIPM equations suffice for changing the humanoid’s
state from stationary to a moving initial velocity, and for
back walk. Alternatively, these constraints may be forgone
in favor of experimentally derived limits on acceleration and
deceleration, and the equations which follow below represent
a theoretically obtainable limit, which need not be observed
in the standard LIPM formulation.
The constraints are derived in the form of maximum and
minimum ratios of initial and final velocity over a single
step (vf/vi).
The constraints are derived to obtain the following range:

(
vf
vi

)
min

= p−
√
p2 − 1 (6)

and (
vf
vi

)
max

= p (7)

Or,

(vf )min =
(
p−

√
p2 − 1

)
vi (8)

(vf )max = pvi (9)

where

p = cosh

(
Ts
Tc

)
(10)

The above range is independent of all other earlier states,
which means that the range applies to any step considered
independently.
The footstep positions generated by a given path have been
pictorially presented in Fig 4. Each circle indicates where
the humanoid will place its foot. It may be observed from
the image that the step lengths are considerably less along
the circular arcs, showing the decreased velocity of the robot
when turning. Furthermore, the first two steps on the circle
possess a step length which is shorter than the maximum
step length, but not as short as the step length of the
feet during the circular motion. This indicates the transition
from maximum velocity to the circular velocity, with two
intermediate steps to facilitate the transition. If the velocity
constraints described above were not in place, the circular
trajectory would have resulted in an immediate velocity drop,
leading to instability. Handling this transition is crucial in
the scenario where the online path alternately generates a
line and a circle, which would otherwise result in a sudden
change from maximum velocity to circular velocity, and then
back to maximum velocity.

Fig. 4: Footstep locations for the given path.

V. EXPERIMENT AND RESULTS

Visibility graph in this case consists of (4 ∗ n + 2)
number of points in the worst case, where n in the number
of obstacles intersecting the line joining the start and end
point, i.e. coming in the way of the bot to reach the goal
position. The visibility graph can be calculated in worst case
time of O(n2). Further more the Dijkstra’s has a wost case
performance of O(4n + 4n ∗ log(4n)). Thus this algorithm
decreases the number of node points on which a graph
search can be applied with ease.

The footstep planning interface along with the path
planning were integrated with the behavior layer of the
humanoid for testing purposes. For the experimental setup,
two obstacles of radius 15 cm each were placed in the
way of the bot and the ball. The bot had to navigate its
way around the obstacles and align itself to hit the ball
towards the goalposts. Both the scenarios where obstacles
were static and dynamic were devised to test the efficacy
of the algorithm. The tests were conducted for a total of
more than 200 configurations in both cases. The advantages

Fig. 5: The use of path planning for multiple obstacles.



Fig. 6: Testing variables for various algorithms above.

which were very apparent that the bot was able to correct
its trajectory when it lost track of the path, due to losing
its stability or some mechanical disturbances like friction.
In the dynamic scenario some oscillation at a point were
observed where the robot has to choose between two equally
probable paths. Such edge cases can be easily be solved
by either random selection or adjusting the frequency of
mapping final path to the gait vector.
The number of obstacles particularly in Robocup are small.
In the worst case scenario it will result in a visibility graph
of 15 nodes. At such high frame rates, the dynamic nature
of the obstacles is easily taken care of. The noise from
the sensors like camera and the deviation of walk are thus
handled naturally as a result of this. Fig. 5 shows the results
of using the algorithm for an arbitrary configuration.

VI. COMPARISON

The algorithm presented here is compared with the other
standard planning algorithms in terms of time taken, and
no. of operations. The algorithm discussed in this paper is
applicable to very specific cases, especially when the size
of the obstacle is comparable to that of the robot itself.
One of the main advantages of this geometry based planning
algorithm is the non dependency on grids.

Moreover it is not restricted to frame area of any size
whatsoever, meaning the obstacles, final position can be
located anywhere with reference to the navigating object
without any cost to computation.

Algorithm Time (ms)
Geometry based 3.6
A∗, 5
Breadth First Search 13
Best First Search 5
Dijkstra 18
Artificial Potential
Mapping

6

Table 1: Comparison of Various Path Planning Algorithms

For comparing this algorithm with the other standard ones
in the literature we considered the setup of 2 obstacles
along the way to the final point as shown in Fig. 6. The

results of the comparison are as tabulated in Table 1.

VII. CONCLUSION

We have presented an unique way for path planning
which is best suitable to the case when the obstacles size
is comparable to the robots. In such cases we can take
advantage of the robots shape which can be approximated
to simple circles to find the best way possible around them
using simple geometry. Therefore we reduce the number
of node points on which a graph search can be applied.
This reduces the computation time significantly thus giving
better frame rates for the execution of code on an on board
processor. Thus the dynamic nature of the robot soccer
games can easily be taken care of along with any noise
from the sensors and deviation from the walk. This is then
ported to the 3D-LIPM walking pattern generator to adjust
the footsteps, gait in such a way that the robot is stable
while following the given path.

VIII. ACKNOWLEDGMENT

The authors would like to thank the Department of Elec-
tronics and Information Technology, Government of India
who funded the research project. The experiments were
carried out at Centre for Robotics and Intelligent Systems,
BITS Pilani.

REFERENCES

[1] J. Chestnutt, M. Lau, G. Cheung, J. Kuffner, J. K. Hodgins, and T.
Kanade, ”Footstep planning for the Honda ASIMO humanoid”, in
Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA?05),
April 2005.

[2] Y. Ayaz, T. Owa, T. Tsujita, A. Konno, K. Munawar, and M.
Uchiyama, ”Footstep planning for humanoid robots among obstacles
of various types”, in Proc. IEEE-RAS Conf. Humanoid Robots, Dec.
2009, pp. 361-366.

[3] Lina Ourima, ”Fast Geometric Path Planning for the Small Size
Robocup League”, Friei Universitat Berlin, June 2004

[4] Maren Bennewitz and Wolfram Burgard, Finding Solvable Priority
Schemes for Decoupled Path Planning Techniques for Teams of
Mobile Robots, PROCEEDINGS OF THE 9TH INTERNATIONAL
SYMPOSIUM ON INTELLIGENT ROBOTIC SYSTEMS, 2001

[5] Ricarda Steffens et. al., Multiresolution Path Planning in Dynamic
Environments for the Standard Platform League, Proceedings of the
5th Workshop on Humanoid Soccer Robots @ Humanoids 2010, Dec.
2010

[6] Oussama Khatib, Real-time obstacle avoidance for manipulators and
mobile robots,” Proceedings of the 1985 IEEE International Confer-
ence on Robotics and Automation, St. Louis, MO, May 1985

[7] Sven Koenig et. al., D* Lite, American Association for Artificial
Intelligence, 2002

[8] J. Chestnutt, J. Kuffner, K. Nishiwaki, and S. Kagami, ?Planning
biped navigation strategies in complex environments,? in Proc. of
the IEEERAS/RSJ Int. Conf. on Humanoid Robots (Humanoids?03),
Munich, Germany, October 2003.

[9] Andreas Schmitz, Marcell Missura, and Sven Behnke, ”Real-time tra-
jectory generation by offline footstep planning for a humanoid soccer
robot”, In Proceedings of 15th RoboCup International Symposium,
Istanbul, 2011.

[10] Huijuan Wang et. al., Application of Dijkstra algorithm in robot path-
planning,

[11] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi and H. Hirukawa, ”The
3D linear inverted pendulum model: a simple modeling for a biped
walking pattern generation”, In IROS, 2001, Vol. 1, pp. 239-246

[12] H. Alt and E. Welzi, Visibility Graphs and Obstacle Avoiding shortest
paths, Zeitschrift fr Operations Research,1998


