
Effective Localization of Humanoid with Fish-Eye Lens Using Field Line Detection

Pratyush Kar, Archit Jain
Dept. of Computer Science

BITS Pilani, India
e-mail: {pratyush.kar, amiarchit}@gmail.com

B. K. Rout
Dept. of Mechanical Engineering

BITS Pilani, India
e-mail: rout@pilani.bits-pilani.ac.in

Abstract—This paper presents a real-time technique for
efficient localization of a humanoid robot in a soccer field using
a fish-eye lens. We propose a novel method that uses node
merging to provide a robust and an accurate estimate of
positions of the intersection points in the field lines. The
distances to these points are calculated using Inverse
Perspective Mapping and fed to the particle filter for the
purpose of localization. The proposed algorithms have been
implemented and tested on the humanoid robot platform
AcYut, being developed at the Centre for Robotics and
Intelligent Systems (CRIS), BITS Pilani.

Keywords-Localization; monte carlo; x-t detection; fish-eye
lens; inverse perspective mapping; robocup

I. INTRODUCTION
Localization is a key task that an autonomous humanoid

robot must perform to be successful as a soccer playing agent.
The humanoid must be able to assert its position prior to it
being able to perform tasks like path planning, obstacle
avoidance, etc. This problem becomes more and more
challenging as RoboCup increasingly discourage the use of
colour based markers to assist in this endeavor. With the
field becoming more symmetric and similar to a traditional
football field, there is a need to come up with efficient and
robust techniques to solve this problem. Due to the absence
of markers on the field, it is essential to utilize localization
cues such as the structure of the field lines to facilitate in the
localization process. The use of line intersections in the
localization is beneficial in two ways. Firstly, it improves the
number of localization cues in the environment, thereby
making the system more robust, as it reduces the dependence
on any particular landmark. Secondly, it mitigates the errors
caused due to the uncertainty in the position estimate of
distant landmarks. This is particularly essential when precise
positioning is required.

In humanoid vision systems, a rectilinear lens is
generally used in the camera assembly. It has low distortion
but also provides a low Field of Vision (FOV). This low
FOV demands unnecessary actuator motion of the head and
leads to inaccuracies (in distance estimation) generated due
to the motion of the camera. Moreover, the number of
objects of interest visible in a particular frame are relatively
few. A fish-eye lens, on the other hand, offers a larger FOV,
in the order of 185°, but at the same time has a large amount
of radial distortion. This FOV alleviates the need for frequent

head motion but gives rise to additional challenges in
identifying the line intersection points. Due to the significant
amount of distortion in the image the intersection points in
the field lines appear severely skewed (see Fig. 1A).
Although, there exist techniques to undistort the distorted
image captured using a fish-eye lens [1], [2]. These
techniques prove to be computationally expensive when
applied to the entire image and often the undistorted image
lacks the clarity to identify the line intersection points with
accuracy. This paper proposes a method based on node
merging to identify the line intersection points which is
robust against the distortion caused due to the optics of a
fish-eye lens. A process termed as digestion, explained in
Section IV, is used to compute the node graph. This is
utilized for the purpose of identifying the intersection points
in the field lines.

The rest of the paper is organized as follows. Section II
cites some works that have been pursued in this area. The
robot test platform has been described in detail in Section III.
For the purpose of explanation of the algorithm the cognition
machinery has been divided into three independent sub-
modules namely, Feature Detection, Feature Management
and Localization. Sections IV, V and VI elaborates these
modules respectively. Section VII discusses about the
observations and results obtained in the experiments. Finally,
Section VIII concludes the paper, with future perspectives.

II. RELATED WORK
The task of utilization of field lines for localization of a

mobile robot can be broadly broken into three sub-problems:
- identification of the candidate line segments, merging the
line segments to form a meaningful representation of the
field lines, and matching the identified features to the
corresponding cues on the known map for the purpose of
localization.

The candidate line segments are usually identified by
using an appropriate mask and then convolving across the
image. Previous research has utilized filters based on green-
white-green transition [3] and techniques that perform
vertical scans of the image [4]. Other approaches have used
techniques based on Canny or Sobel edge detectors [5]. In
our approach we first apply the aforementioned edge
detection techniques followed by morphological dilation and
skeletonization of the image to extract the characteristic
structure from the input image.

72

2016 Asia-Pacific Conference on Intelligent Robot Systems

978-1-5090-1362-3/16/$31.00 ©2016 IEEE

Figure 1. Computation of convex hull. (A) Image of the field captured using a fish-eye lens. (B) The red outline shows the contour of the green blob

having the largest area. Its corresponding convex hull is drawn in blue. (C) Final region of interest (ROI) of the field.

Next these line segments need to be merged in order to
obtain a more meaningful representation of the field lines.
Traditionally this is done using Hough based techniques [6],
[7] by transforming the detected line segments into the
parameter space. This technique, however, requires a large
accumulator array to be maintained and will suffer when
used on images captured using a fish-eye lens, due to the
excessive amount of radial distortion. The approach adopted
by the Nao team NUManoid [3], where the lines are formed
by repeated addition of detected points to a line across a
gradient, also suffers from similar issues. The technique
proposed by Team NimbRo [8] alleviates some of the issues
of the previously mentioned techniques by computing the
node graph on the skeletonized image but, relies on effective
placement and connection of nodes. We have observed that
errors in the detection of line segments, impact the
connection of nodes which results in discontinuity in the
computed node graph. This paper builds on this technique
and proposes a new, robust method for the calculation of the
node graph that is less susceptible to errors due to detection
of spurious line segments.

The intent of this paper is to provide a generic technique
for computing the node graph, for the field lines, that can be
implemented on any camera system and is not restricted to a
fish-eye lens-based vision system.

III. HUMANOID TEST PLATFORM
The algorithm proposed in this paper has been

implemented and tested on the humanoid robot platform
AcYut being developed at the Centre for Robotics and
Intelligent Systems, BITS Pilani. The latest version, AcYut
VII is a 24-DOF humanoid robot and is equipped with a 1.7
GHz, 4th generation Intel Core i3-4010U processor. For the
vision system, a 752 X 480 resolution camera (IDS UI-
1221LE) is employed along with a fish-eye lens (Lensagon
BF2M12520) and is capable of capturing images at 48
frames per second (fps). A 5m X 3m football field was used
in the experimentation, in which the field lines were marked
using 10cm wide white ribbon.

IV. FEATURE DETECTION
This module deals with the image acquisition from the

camera and detection of features for the localization of the

robot in the field. Features are defined as elements relevant
for regional localization. Examples of features might be the
ball, field lines, their intersections, opponents, and
teammates. For brevity, only the feature detection of the field
lines is explained here.

A. Image Buffer
The image frame captured from the camera, instead of

being directly processed upon, is added to an image buffer
that operates in a First in First out (FIFO) manner. When a
new camera frame is added to the buffer, the oldest image
stored in the buffer is released. The images stored in the
buffer are averaged and the resultant image is used as an
input to the algorithm. This method has several advantages,
such as, it counteracts the variation caused due to the indoor
lighting, there is no tearing between frames, and it also
provides a smooth transition between two frames in which
any object is displaced significantly. Furthermore, this
technique is robust against errors in image frame acquisition
from the camera. This averaged image is then subsampled to
reduce the size to a 320 X 240 resolution image. This is done
to reduce the computational overhead in the subsequent steps
of the algorithm. For the purpose of illustration the image
shown in Fig. 1A is considered as a sample input image for
the rest of the paper.

B. Field Detection and Boundary Extraction
Before the image can be used for feature detection, a

Region of Interest (ROI) needs to be computed where all the
objects of interest are present. Since, all the objects of
interest (field lines) are present on the field, the field must be
identified and the boundary needs to be computed prior to
the feature detection step.

The averaged image produced in the image acquisition
step is converted from the standard RGB colour space to an
HSV colour space. The converted image is made to pass
through a min-max threshold cut-off filter with the colour
range of green. The thresholded image is first
morphologically eroded to remove small blobs that appear in
the image and then it is morphologically dilated to fill up
small holes. The contours of the image are calculated to
produce polylines around each of the blobs. The contours for

73

the sample input image are shown in red in Fig. 1B. The area
of the blobs is computed and the largest one is selected as the
field contour. A convex hull enclosing this selected polyline
is computed, which serves as the field boundary of the input
image. The calculated field and its boundary are used as a
mask to define the ROI for the process of line isolation. The
convex hull for the sample input image is shown in Fig. 1C.

C. Line Detection
In the ROI computed above, a whitespace search and

canny edge detection is used to identify any non-smooth or
extremely steep changes in the image. These features are

assumed to be field lines. The identified line segments are
shown in Fig. 2A in blue. These features are morphologically
dilated to make both edges of the field lines merge, remove
any non-smoothness in the lines and merge any breaks in the
detection. The image is then morphologically eroded and
skeletonized to a pixel width using the Zhang-Suen thinning
algorithm [9]. The usage of Zhang-Suen thinning algorithm
ensures that the end points and the pixel connectivity in the
3X3 pixel neighborhood is preserved. The skeletonized
image for the sample input image is shown in Fig. 2B.

Figure 2. Calculating the node graph G. (A) Thresholded image showing the field lines in blue. (B) Skeletonized image of the field lines. (C) Final

computed node graph overlaid on the original input image. Blue circles denote the major nodes, pink circles denote the detected feature points, and yellow
circles show the end points of the connected line segments. The connection between the major nodes is shown in blue.

D. Algorithm – Identifying Major Nodes
To localize itself the robot needs to identify certain key

points that can be used as localization cues. Easiest of all are
the crossing over of field lines. To detect these points, we
first assume that all the points on the skeleton are possibly
key points, each of these points being called a node. Then
we assign a certain weight to each node based on how many
neighbouring pixels are node themselves (low_wt, med_wt
and high_wt in order). To identify the major nodes we begin
a process termed as digestion. In this process each node
starts digesting all nodes, having a lower digestion weight,
within a certain radius termed as digestion radius. When the
node performing digestion encounters any other node, the
node with the lesser weight is deleted and the other node
continues the digestion with the weight of the deleted node
added to its own weight. Algorithm 1 describes the
technique for identification of the major nodes in additional
detail.

Algorithm 1 Identify Major Nodes

1: img ← Input skeletonized image
2: sz ← Size(img)
3: white_cnt ← new Mat(sz)
4: digest_wt ← new Mat(sz)
5: cij ← new Mat(sz)
6: for all non-zero pixels (i, j) in img do
7: cij[i][j] ← 1

8: white_cnt[i][j] ← white count in the 3x3 neighborhood of pixel
(i, j)
9: if white_cnt[i][j] ≤ 1 then
10: digest_ct[i][j] ← 0
11: else if white_cnt[i][j] is 2 then
12: digest_ct[i][j] ← low_wt
13: else if white_cnt[i][j] is 3 then
14: digest_ct[i][j] ← med_wt
15: else
16: digest_ct[i][j] ← high_wt
17: end if
18: end for
19: for all non-zero pixels (i, j) in img do
20: N ← all pixels inside the digestion radius of (i, j)
21: (mi, mj) ← pixel ∈ N having max digest_wt
22: digest_wt[mi][mj] ← sum of all digest_wt ∈ N
23: for all (ki, kj) ∈ N – {(mi, mj)} do
24: digest_wt[ki][kj] ← 0
25: end for
26: cij[mi][mj] ← 2
27: end for

Here white_cnt, digest_wt and cij are 2D vectors having

size equal to the size of the image and are all initialised to 0.
white_cnt is used to maintain the white count in the 3x3
neighbourhood of the pixel, digest_wt keeps track of the
digestion weights in the digestion process and cij is used as
a flag to differentiate between major nodes and secondary
node (that are deleted in the digestion process) having
values 1 and 2 respectively. After the digestion, we find that

74

the skeleton is simplified to include only major nodes and
now these nodes can be connected. Digestion is
tremendously advantageous as it inherently takes care of
any aberrations in the skeleton and the generated major
nodes tend to be in agreement with points of intersection of
the field lines. In this algorithm, the digestion process has
the most computation overhead. As the size of digestion
radius is increased this computation overhead increases. But,
through experimentation we have observed that the value of
the digestion radius does not need to be big for the
successful operation of the algorithm. A moderate value of
the digestion radius gives us frame rates comparable to the
frame rate at which the images are captured from the camera.
The value of the digestion radius used in our
implementation is 5. This value can be further reduced, but
it was observed that at certain camera angles, due to
excessive skew in the field lines the major nodes were not
getting identified properly.

E. Algorithm – Building the Node Graph
After the identification of the major nodes in the

skeletonized image, we need to connect these nodes before
we can use these features for localization. The key nodes
need to be connected in order to compute the degree of the
node for the purpose of identification of the feature. This is
achieved by traversing along the skeletonized line segment
starting from the major node (through the secondary nodes)
till a neighbouring major node is encountered. When another
major node is reached, the two major nodes along with the
intermediate secondary nodes are connected together and
added to the node graph G. This process is repeated for all
the major nodes until the entire node graph is computed as
shown in Algorithm 2. In the preprocessing step, Zhang-
Suen algorithm [9] is applied on the image, hence, the pixel
connectivity between the nodes of the graph is ensured. Thus,
we can use common graph algorithms like depth-first search
(DFS) for traversing the graph. DFS is asymptotically linear
in the number of nodes in the graph, hence, this stage has a
very small computation overhead on the overall algorithm.

Algorithm 2 Building the Node Graph

1: img ← Input skeletonized image
2: for all pixels (i, j) having cij[i][j] = 2 in img do
3: look for nearby major nodes (mi, mj)
4: repeat
5: traverse the line connecting (i, j) to (mi, mj) via the

secondary nodes
6: until any neighboring major node (mi, mj) is found
7: join (i, j) and (mi, mj) through the secondary nodes in
 the Node Graph G
8: end for

Now that the connected node graph is available to us, we
can identify the respective features by computing the degrees
of the key points in the node graph. Points having degree 4
are X's, formed between the half line and the central circle.
Points having degree 3 are T's, formed between half line and

the field boundary. The corresponding feature points for the
sample image are shown in pink in Fig. 2C. Corner L's can
also be identified by finding degree 2 points that have a
sufficiently large gradient between the two connecting line
segments.

V. FEATURE MANAGER

Features are a common link between real world locations
and virtual space landmarks which are used to localize the
robot. This module receives the potential feature points and
validates them for spurious detections. The relative distance
of the robot is calculated from each of the identified features
is calculated and passed on to the localization module for
estimation of the current pose of the robot.

A. Feature Validation
Information regarding every feature type is stored in a

form of a dynamic list that gets updated as and when new
features are detected by the Feature Detection module.
Whenever a potential feature point is sent to the Feature
Manager, it decides whether it is a realistic one, based on the
current pose of the robot. If the feature is valid, it is pushed
onto the corresponding dynamic list. With every feature type,
a corresponding confidence is associated with it, which is
calculated based on the likelihood of encountering the said
feature and its pixel distance from the polar axis of the
camera. This confidence c is decayed at each frame
exponentially as given is Eq. (1), and features having a
confidence less than a certain threshold are discarded from
the list. This aids in reducing the effects of bogus detection
of feature points and makes the overall localization more
robust. A feature that is not likely to be seen will be given a
lower value of co and hence, it will not have a significant
impact on the localization estimate. On the other hand if a
feature is getting detected intermittently, it will not be
discarded immediately in the frames in which it is not
detected. ܿ = ܿ݁షം (1)

here co is the initial confidence, n is the frame number and γ
is the decay constant. Whenever a new feature is encountered
the value co for the corresponding feature type is initialized
to 1. If the feature point had been detected earlier, co is
updated by adding 1 to the corresponding value of c in the
previous frame. The value of γ has been set to 50 in our
implementation.

B. Distance Calculation
Relative distance determination of the features is

essential for the purpose of localization. Inverse Perspective
Mapping (IPM) [10], a geometrical transformation technique
where the image is transformed from one perspective to
another, can be used to generate a bird’s eye view of the
image, thus removing the perspective effect. Application of
IPM however, requires a rectilinear input image like in a
pinhole camera. Therefore, the coordinates of the feature
points need to be undistorted before the distance is estimated.

75

There are several methods for undistorting the images
captured using a fish-eye lens. Out of these, two of them
have been considered in this work. First one assumes a
simple barrel distortion and exploits this assumption to
provide a geometric estimate for the undistorted coordinates
[2]. The second method uses polynomial regression to map
the distorted coordinates to the undistorted coordinates [1].

1) Barrel Distortion: In barrel distortion, the image
magnification decreases as we move radially outward from
the center of the image. This results in an image with an
apparent spherical effect. The distortion correction algorithm
assumes a simple barrel distortion and calculates the
corrected image coordinates ݎሬሬ⃗ given the distorted image
coordinates ݎௗሬሬሬ⃗ by the following equation:ݎሬሬ⃗ = ሬሬሬሬሬ⃗ଵିఈ‖ሬሬሬሬሬ⃗ ‖మ (2)

here ߙ depends on the optical system and needs to be
identified beforehand. The value of ߙ used in our
implementation for the camera setup explained in section III
is approximately 8.1E-06.

2) Polynomial Regression: Best possible camera to carry
out quantitative measurements is the pinhole camera where
the distances are calculated using the properties of similar
triangles. In this technique, the coordinates in the fish-eye
image are found. Then the respective pinhole camera
coordinates are estimated. Finally polynomial regression is
used to map the coordinates of the fish-eye image to the
coordinates in the rectilinear image. It has been found
experimentally [1] that polynomials of degree 5 and 7
provide the best results. Since fish-eye lens has a distortion
which is radial in nature, polar coordinates have been used to
represent the various sample points. The mapping can be
represented by the following equations: ݎ = ܽ + ܽଵݎௗ + ܽଶݎௗଶ + ܽଷݎௗଷ + ܽସݎௗସ + ܽହݎௗହ ߠ (3) = ܾ + ܾଵߠௗ + ܾଶߠௗଶ + ܾଷߠௗଷ + ܾସߠௗସ + ܾହߠௗହ (4)

where the constants ܽ, … , ܽହ and ܾ, … , ܾହ are calculated
using the techniques of polynomial regression. The values of
constants calculated for our vision setup are shown in Table I.
It is evident from the values calculated for (ܾ, … , ܾହ) that
only the linear term (ܾଵ) is significant. This demonstrates
that the distortion is mainly in the radial direction and the
angular distortion caused by the optics is negligible. This
property enables us to detect features on the distorted image
because the skew caused due to the angular distortion can be
neglected.

Both the techniques provide comparable results, however,
the polynomial regression technique provides additional
versatility, as we can change the complexity of the mapping
model to make the polynomial function more flexible. For
this reason, we have used the polynomial regression model in
our implementation.

TABLE I. POLYNOMIAL REGRESSION CONSTANTSݎ Values Valuesܽ 0.0336ߠ ܾ 0.0001ܽଵ -1.6658 ܾଵ 0.9987ܽଶ 0.0759 ܾଶ 3.95E-17ܽଷ -0.0008 ܾଷ 5.27E-04ܽସ 3.61E-06 ܾସ -7.56E-18ܽହ -5.78E-09 ܾହ -3.87E-05

VI. LOCALIZATION

We have used Monte Carlo Localization (MCL) [11] for
estimating the 3D pose of our robots. The pose is a tuple (ݔ, ,ݕ ,ݔ) where ,(ߠ is the position of the robot in the field (ݕ
in Cartesian coordinates and ߠ is the orientation of the robot.
The particle filter is updated at each frame using the Bayes’
theorem based on the combination of beliefs of both the
motion model and the observation model. The motion model
denotes the probability that the robot is in state ݔ௧ given that
the robot executes an action ܽ௧ in state ݔ௧ିଵ and is updated at
each frame by the walk module. The observation model is
the likelihood that the robot makes observations ݖ௧ given that
the robot is in stateݔ௧. It uses the identified landmarks and
estimates the probability of a particular pose based on the
distances measured to the said landmarks.

Initially, a fixed number of particles (poses) ܰ are spread
randomly throughout the field. At each frame, the
observation model estimates the likelihood of a particle by
comparing the observed distance with the expected distance
using the following equation:

()ܲ ∝ ෑ ݁∀∈
‖௦ି௦‖ଶఙమ (5)

here ݏ and ݏ are the expected and observed distances
respectively. ߪଶ is the variance of the distances between
landmark ݈ and all the particles. ܮ is the set of all landmarks.

The particles are then resampled using the ܲ as the
probability of selecting a particle. This process is repeated
for each frame till the pose is stabilised. A few additional
particles are added randomly in place of some particles at
each frame in order to avoid the "kidnapped robot problem".
If the pose certainty drops suddenly below a certain
threshold, then additional particles are used to rectify the
situation, by augmented MCL [12]. Since the RoboCup field
has symmetric landmarks, the MCL algorithm identifies 2
possible poses for the robot. One of the poses is eliminated
using the yaw reading of the Inertial Measurement Unit
(IMU). The yaw reading of the opponent's goal is fed into the
robot prior to the match. Fig. 3 shows the localization
estimate of the robot on a sample image. Only the field lines
were used as the localization cues, the goal posts in yellow
were not used in this illustration.

76

Figure 3. Localizing the robot in the field. (A) Features identified by the feature manager. Pink circles denote the feature points, blue circles represent the
major nodes. (B) Localization estimate of the robot. The opponent’s goal is on the left hand side of the image. The localization estimate of the bot is shown

in black. The orientation of the robot θ is depicted by the white arrow.

VII. RESULTS

For comparing the results of the localization techniques,
two situations were considered. In the first situation only the
goal posts were used to localize the bot. In the second case
only the field lines were used as localization cues. The field
lines are meant to augment the localization along with the
goal posts, for the purpose of comparison, only field lines
were used to estimate the robot’s location in the field. In both
the situations 200 particles were used in the particle filters.
An IMU was used in both the cases in order to differentiate
between the two halves of the field as the field is symmetric.
20 random poses were considered on the field, 10 in our own
half, the other 10 in the opponent’s half. Due to the
symmetric nature of the field all the 20 poses were chosen
such that the opponent’s goal post was visible to the robot.

In case of goal post based localization 8 out of the 20
poses were within 40cm of the ground truth. Out of these,
majority of the cases were localized accurately when the goal
posts were within 2 - 2.5m of the robot. This is because the
distance estimate starts to become erroneous when point of
interest is at the periphery of the camera frame. On the other
hand when only field lines were used for the localization 17
out of 20 poses were within the stipulated error radius of
40cm. One of the sample pose is shown in Fig. 3 along with
the localization estimate. The black cluster of points in Fig.
3B represent the position (ݔ, of the robot and the white (ݕ
arrow represents its orientation ߠ . Table II reports the
experimental results in an organized manner.

TABLE II. EXPERIMENTAL RESULTS

Mode Number of Poses in Error Radius (40cm)

Own Half Opponent’s Half
Only goalposts 2 6
Only field lines 9 8

VIII. CONCLUSION

In this paper we have presented a new method of
identifying the field lines by computing the node graph
through a process of digestion. This method provides us

additional landmarks that assist in the localization. We
observed that the majority of errors in the belief occur due to
the inaccuracies in the distance estimation using IPM due to
the large curvature of the fish-eye lens. The use of field lines
as landmarks help in mitigating these errors and provide
additional landmarks to make the localization more robust.
Currently the implementation is not optimized and uses a
matrix to store the digestion weights. Our future works will
include implementations which use the disjoint-set data
structure for the process of digestion to reduce this overhead.
As shown in Fig. 3A the computed node graph captures the
structure of the field lines effectively. This information can
be used for more complex feature detections like arcs in the
central circle that can be used for the precise positioning of
the robot.

ACKNOWLEDGMENT

The authors would like to thank Department of
Electronics and Information Technology (DeitY),
Government of India for financially supporting the project.
The experiments were performed at the Centre for Robotics
and Intelligent Systems (CRIS), BITS Pilani.

REFERENCES

[1] S. Shah, J. K. Agarwal, “Intrinsic parameter calibration procedure for
a (high-distortion) fish-eye lens camera with distortion model and
accuracy estimation”, Pattern Recognition, vol. 29, no. 11, pp. 1775-
1788, 1996.

[2] M. Missura, M. Schreiber, J. Pastrana, C. Münstermann, M. Schwartz,
S. Schueller,, S. Behnke, “NimbRo TeenSize 2013 Team
Description”, 2013.

[3] N. Henderson, P. Nicklin, A. Wong, J. Kulk, K. Chalup, R. King, H.
Middleton, S. Tang, A. Buckley, “The 2008 NUManoids Team
Report”, RoboCup SPL Team Descriptions, Suzou, China, 2008.

[4] M. Sridharan, P. Stone, “Real-time vision on a mobile robot
platform”, IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 2148-2153, 2005.

[5] R. C. Gonzalez, R. E. Woods, “Digital Image Processing”, Prentice
Hall, 2002.

[6] A. Baist, R. Sablatnig, G. Novak, “Line-based landmark recognition
for self-localization of soccer robots”, Proceeding of the IEEE
International Conference on Emerging Technologies, pp. 132-137,
2005.

77

[7] H. Strasdat, M. Bennewitz, S. Behnke, “Multi-cue localization for
soccer playing humanoid robots,” RoboCup 2006: Robot Soccer
World Cup X. Springer Berlin Heidelberg, pp. 245-257, 2006.

[8] H. Schulz, S. Behnke, “Utilizing the structure of field lines for
efficient soccer robot localization”, Advanced Robotics, vol. 26, no.
14, pp. 1603-1621, 2012.

[9] T. Zhang, C. Suen, “A fast parallel algorithm for thinning digital
patterns”, Communications of the ACM, vol. 27, no. 3, pp. 236-239,
1984.

[10] T. E. Schouten, Egon L. van den Broek, “Inverse perspective
transformation for video surveillance,” Electronic Imaging 2008.
International Society for Optics and Photonics, 2008.

[11] T. Agarwal, D. Gopinath, “Localization using relative mapping
technique for mobile soccer robots,” in International Conference on
Communications and Signal Processing (ICCSP), pp. 265-269, 2013.

[12] S. Thrun, W. Bugard, D. Fox, “Probabilistic Robotics”. Cambridge,
Mass.: The MIT Press, 2005.

78

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

