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Abstract—This paper presents a real-time technique for 
efficient localization of a humanoid robot in a soccer field using 
a fish-eye lens. We propose a novel method that uses node 
merging to provide a robust and an accurate estimate of 
positions of the intersection points in the field lines. The 
distances to these points are calculated using Inverse 
Perspective Mapping and fed to the particle filter for the 
purpose of localization. The proposed algorithms have been 
implemented and tested on the humanoid robot platform 
AcYut, being developed at the Centre for Robotics and 
Intelligent Systems (CRIS), BITS Pilani. 

Keywords-Localization; monte carlo; x-t detection; fish-eye 
lens; inverse perspective mapping; robocup 

I. INTRODUCTION 
Localization is a key task that an autonomous humanoid 

robot must perform to be successful as a soccer playing agent. 
The humanoid must be able to assert its position prior to it 
being able to perform tasks like path planning, obstacle 
avoidance, etc. This problem becomes more and more 
challenging as RoboCup increasingly discourage the use of 
colour based markers to assist in this endeavor. With the 
field becoming more symmetric and similar to a traditional 
football field, there is a need to come up with efficient and 
robust techniques to solve this problem. Due to the absence 
of markers on the field, it is essential to utilize localization 
cues such as the structure of the field lines to facilitate in the 
localization process. The use of line intersections in the 
localization is beneficial in two ways. Firstly, it improves the 
number of localization cues in the environment, thereby 
making the system more robust, as it reduces the dependence 
on any particular landmark. Secondly, it mitigates the errors 
caused due to the uncertainty in the position estimate of 
distant landmarks. This is particularly essential when precise 
positioning is required. 

In humanoid vision systems, a rectilinear lens is 
generally used in the camera assembly. It has low distortion 
but also provides a low Field of Vision (FOV). This low 
FOV demands unnecessary actuator motion of the head and 
leads to inaccuracies (in distance estimation) generated due 
to the motion of the camera. Moreover, the number of 
objects of interest visible in a particular frame are relatively 
few. A fish-eye lens, on the other hand, offers a larger FOV, 
in the order of 185°, but at the same time has a large amount 
of radial distortion. This FOV alleviates the need for frequent 

head motion but gives rise to additional challenges in 
identifying the line intersection points. Due to the significant 
amount of distortion in the image the intersection points in 
the field lines appear severely skewed (see Fig. 1A). 
Although, there exist techniques to undistort the distorted 
image captured using a fish-eye lens [1], [2]. These 
techniques prove to be computationally expensive when 
applied to the entire image and often the undistorted image 
lacks the clarity to identify the line intersection points with 
accuracy. This paper proposes a method based on node 
merging to identify the line intersection points which is 
robust against the distortion caused due to the optics of a 
fish-eye lens. A process termed as digestion, explained in 
Section IV, is used to compute the node graph. This is 
utilized for the purpose of identifying the intersection points 
in the field lines. 

The rest of the paper is organized as follows. Section II 
cites some works that have been pursued in this area. The 
robot test platform has been described in detail in Section III. 
For the purpose of explanation of the algorithm the cognition 
machinery has been divided into three independent sub-
modules namely, Feature Detection, Feature Management 
and Localization. Sections IV, V and VI elaborates these 
modules respectively. Section VII discusses about the 
observations and results obtained in the experiments. Finally, 
Section VIII concludes the paper, with future perspectives. 

II. RELATED WORK 
The task of utilization of field lines for localization of a 

mobile robot can be broadly broken into three sub-problems: 
- identification of the candidate line segments, merging the 
line segments to form a meaningful representation of the 
field lines, and matching the identified features to the 
corresponding cues on the known map for the purpose of 
localization. 

The candidate line segments are usually identified by 
using an appropriate mask and then convolving across the 
image. Previous research has utilized filters based on green-
white-green transition [3] and techniques that perform 
vertical scans of the image [4]. Other approaches have used 
techniques based on Canny or Sobel edge detectors [5]. In 
our approach we first apply the aforementioned edge 
detection techniques followed by morphological dilation and 
skeletonization of the image to extract the characteristic 
structure from the input image.  
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Figure 1.  Computation of convex hull. (A) Image of the field captured using a fish-eye lens. (B) The red outline shows the contour of the green blob 

having the largest area. Its corresponding convex hull is drawn in blue. (C) Final region of interest (ROI) of the field. 

Next these line segments need to be merged in order to 
obtain a more meaningful representation of the field lines. 
Traditionally this is done using Hough based techniques [6], 
[7] by transforming the detected line segments into the 
parameter space. This technique, however, requires a large 
accumulator array to be maintained and will suffer when 
used on images captured using a fish-eye lens, due to the 
excessive amount of radial distortion. The approach adopted 
by the Nao team NUManoid [3], where the lines are formed 
by repeated addition of detected points to a line across a 
gradient, also suffers from similar issues. The technique 
proposed by Team NimbRo [8] alleviates some of the issues 
of the previously mentioned techniques by computing the 
node graph on the skeletonized image but, relies on effective 
placement and connection of nodes. We have observed that 
errors in the detection of line segments, impact the 
connection of nodes which results in discontinuity in the 
computed node graph. This paper builds on this technique 
and proposes a new, robust method for the calculation of the 
node graph that is less susceptible to errors due to detection 
of spurious line segments. 

The intent of this paper is to provide a generic technique 
for computing the node graph, for the field lines, that can be 
implemented on any camera system and is not restricted to a 
fish-eye lens-based vision system. 

III. HUMANOID TEST PLATFORM 
The algorithm proposed in this paper has been 

implemented and tested on the humanoid robot platform 
AcYut being developed at the Centre for Robotics and 
Intelligent Systems, BITS Pilani. The latest version, AcYut 
VII is a 24-DOF humanoid robot and is equipped with a 1.7 
GHz, 4th generation Intel Core i3-4010U processor. For the 
vision system, a 752 X 480 resolution camera (IDS UI-
1221LE) is employed along with a fish-eye lens (Lensagon 
BF2M12520) and is capable of capturing images at 48 
frames per second (fps). A 5m X 3m football field was used 
in the experimentation, in which the field lines were marked 
using 10cm wide white ribbon. 

IV. FEATURE DETECTION 
This module deals with the image acquisition from the 

camera and detection of features for the localization of the 

robot in the field. Features are defined as elements relevant 
for regional localization. Examples of features might be the 
ball, field lines, their intersections, opponents, and 
teammates. For brevity, only the feature detection of the field 
lines is explained here. 

A. Image Buffer 
The image frame captured from the camera, instead of 

being directly processed upon, is added to an image buffer 
that operates in a First  in First out (FIFO) manner. When a 
new camera frame is added to the buffer, the oldest image 
stored in the buffer is released. The images stored in the 
buffer are averaged and the resultant image is used as an 
input to the algorithm. This method has several advantages, 
such as, it counteracts the variation caused due to the indoor 
lighting, there is no tearing between frames, and it also 
provides a smooth transition between two frames in which 
any object is displaced significantly. Furthermore, this 
technique is robust against errors in image frame acquisition 
from the camera. This averaged image is then subsampled to 
reduce the size to a 320 X 240 resolution image. This is done 
to reduce the computational overhead in the subsequent steps 
of the algorithm. For the purpose of illustration the image 
shown in Fig. 1A is considered as a sample input image for 
the rest of the paper. 

B. Field Detection and Boundary Extraction 
Before the image can be used for feature detection, a 

Region of Interest (ROI) needs to be computed where all the 
objects of interest are present. Since, all the objects of 
interest (field lines) are present on the field, the field must be 
identified and the boundary needs to be computed prior to 
the feature detection step. 

The averaged image produced in the image acquisition 
step is converted from the standard RGB colour space to an 
HSV colour space. The converted image is made to pass 
through a min-max threshold cut-off filter with the colour 
range of green. The thresholded image is first 
morphologically eroded to remove small blobs that appear in 
the image and then it is morphologically dilated to fill up 
small holes. The contours of the image are calculated to 
produce polylines around each of the blobs. The contours for 
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the sample input image are shown in red in Fig. 1B. The area 
of the blobs is computed and the largest one is selected as the 
field contour. A convex hull enclosing this selected polyline 
is computed, which serves as the field boundary of the input 
image. The calculated field and its boundary are used as a 
mask to define the ROI for the process of line isolation. The 
convex hull for the sample input image is shown in Fig. 1C. 

C. Line Detection 
In the ROI computed above, a whitespace search and 

canny edge detection is used to identify any non-smooth or 
extremely steep changes in the image. These features are 

assumed to be field lines. The identified line segments are 
shown in Fig. 2A in blue. These features are morphologically 
dilated to make both edges of the field lines merge, remove 
any non-smoothness in the lines and merge any breaks in the 
detection. The image is then morphologically eroded and 
skeletonized to a pixel width using the Zhang-Suen thinning 
algorithm [9]. The usage of Zhang-Suen thinning algorithm 
ensures that the end points and the pixel connectivity in the 
3X3 pixel neighborhood is preserved. The skeletonized 
image for the sample input image is shown in Fig. 2B. 

 
Figure 2.  Calculating the node graph G. (A) Thresholded image showing the field lines in blue. (B) Skeletonized image of the field lines. (C) Final 

computed node graph overlaid on the original input image. Blue circles denote the major nodes, pink circles denote the detected feature points, and yellow 
circles show the end points of the connected line segments. The connection between the major nodes is shown in blue. 

D. Algorithm – Identifying Major Nodes 
To localize itself the robot needs to identify certain key 

points that can be used as localization cues. Easiest of all are 
the crossing over of field lines. To detect these points, we 
first assume that all the points on the skeleton are possibly 
key points, each of these points being called a node. Then 
we assign a certain weight to each node based on how many 
neighbouring pixels are node themselves (low_wt, med_wt 
and high_wt in order). To identify the major nodes we begin 
a process termed as digestion. In this process each node 
starts digesting all nodes, having a lower digestion weight, 
within a certain radius termed as digestion radius. When the 
node performing digestion encounters any other node, the 
node with the lesser weight is deleted and the other node 
continues the digestion with the weight of the deleted node 
added to its own weight. Algorithm 1 describes the 
technique for identification of the major nodes in additional 
detail. 

 
Algorithm 1 Identify Major Nodes 

 
1: img ← Input skeletonized image 
2: sz ← Size(img) 
3: white_cnt ← new Mat(sz) 
4: digest_wt ← new Mat(sz) 
5: cij ← new Mat(sz) 
6: for all non-zero pixels (i, j) in img do 
7:     cij[i][j] ← 1 

8:    white_cnt[i][j] ← white count in the 3x3 neighborhood of pixel 
(i, j) 
9:     if white_cnt[i][j] ≤ 1 then 
10:  digest_ct[i][j] ← 0 
11:   else if white_cnt[i][j] is 2 then 
12: digest_ct[i][j] ← low_wt 
13:   else if white_cnt[i][j] is 3 then 
14: digest_ct[i][j] ← med_wt 
15:   else 
16: digest_ct[i][j] ← high_wt 
17:   end if 
18: end for 
19: for all non-zero pixels (i, j) in img do 
20:   N ← all pixels inside the digestion radius of (i, j) 
21:   (mi, mj) ← pixel ∈ N having max digest_wt 
22:   digest_wt[mi][mj] ← sum of all digest_wt ∈ N 
23:   for all (ki, kj) ∈ N – {(mi, mj)} do 
24: digest_wt[ki][kj] ← 0 
25:   end for 
26:   cij[mi][mj] ← 2 
27: end for 

 
 
Here white_cnt, digest_wt and cij are 2D vectors having 

size equal to the size of the image and are all initialised to 0. 
white_cnt is used to maintain the white count in the 3x3 
neighbourhood of the pixel, digest_wt keeps track of the 
digestion weights in the digestion process and cij is used as 
a flag to differentiate between major nodes and secondary 
node (that are deleted in the digestion process) having 
values 1 and 2 respectively. After the digestion, we find that 

74



the skeleton is simplified to include only major nodes and 
now these nodes can be connected. Digestion is 
tremendously advantageous as it inherently takes care of 
any aberrations in the skeleton and the generated major 
nodes tend to be in agreement with points of intersection of 
the field lines. In this algorithm, the digestion process has 
the most computation overhead. As the size of digestion 
radius is increased this computation overhead increases. But, 
through experimentation we have observed that the value of 
the digestion radius does not need to be big for the 
successful operation of the algorithm. A moderate value of 
the digestion radius gives us frame rates comparable to the 
frame rate at which the images are captured from the camera. 
The value of the digestion radius used in our 
implementation is 5. This value can be further reduced, but 
it was observed that at certain camera angles, due to 
excessive skew in the field lines the major nodes were not 
getting identified properly. 

E. Algorithm – Building the Node Graph 
After the identification of the major nodes in the 

skeletonized image, we need to connect these nodes before 
we can use these features for localization. The key nodes 
need to be connected in order to compute the degree of the 
node for the purpose of identification of the feature. This is 
achieved by traversing along the skeletonized line segment 
starting from the major node (through the secondary nodes) 
till a neighbouring major node is encountered. When another
major node is reached, the two major nodes along with the 
intermediate secondary nodes are connected together and 
added to the node graph G. This process is repeated for all 
the major nodes until the entire node graph is computed as 
shown in Algorithm 2. In the preprocessing step, Zhang-
Suen algorithm [9] is applied on the image, hence, the pixel 
connectivity between the nodes of the graph is ensured. Thus,
we can use common graph algorithms like depth-first search 
(DFS) for traversing the graph. DFS is asymptotically linear 
in the number of nodes in the graph, hence, this stage has a 
very small computation overhead on the overall algorithm. 

Algorithm 2 Building the Node Graph 

1: img ← Input skeletonized image 
2: for all pixels (i, j) having cij[i][j] = 2 in img do
3:     look for nearby major nodes (mi, mj) 
4:     repeat 
5: traverse the line connecting (i, j) to (mi, mj) via the 

secondary nodes  
6:     until any neighboring major node (mi, mj) is found 
7:     join (i, j) and (mi, mj) through the secondary nodes in
        the Node Graph G 
8: end for 

Now that the connected node graph is available to us, we 
can identify the respective features by computing the degrees 
of the key points in the node graph. Points having degree 4 
are X's, formed between the half line and the central circle. 
Points having degree 3 are T's, formed between half line and 

the field boundary. The corresponding feature points for the 
sample image are shown in pink in Fig. 2C. Corner L's can 
also be identified by finding degree 2 points that have a 
sufficiently large gradient between the two connecting line 
segments. 

V. FEATURE MANAGER

Features are a common link between real world locations 
and virtual space landmarks which are used to localize the 
robot. This module receives the potential feature points and 
validates them for spurious detections. The relative distance 
of the robot is calculated from each of the identified features 
is calculated and passed on to the localization module for 
estimation of the current pose of the robot. 

A. Feature Validation 
Information regarding every feature type is stored in a 

form of a dynamic list that gets updated as and when new 
features are detected by the Feature Detection module. 
Whenever a potential feature point is sent to the Feature 
Manager, it decides whether it is a realistic one, based on the 
current pose of the robot. If the feature is valid, it is pushed 
onto the corresponding dynamic list. With every feature type, 
a corresponding confidence is associated with it, which is 
calculated based on the likelihood of encountering the said 
feature and its pixel distance from the polar axis of the 
camera. This confidence c is decayed at each frame 
exponentially as given is Eq. (1), and features having a 
confidence less than a certain threshold are discarded from 
the list. This aids in reducing the effects of bogus detection 
of feature points and makes the overall localization more 
robust. A feature that is not likely to be seen will be given a 
lower value of co and hence, it will not have a significant 
impact on the localization estimate. On the other hand if a 
feature is getting detected intermittently, it will not be 
discarded immediately in the frames in which it is not 
detected. ܿ = ܿ݁షം                                       (1) 

here co is the initial confidence, n is the frame number and γ
is the decay constant. Whenever a new feature is encountered 
the value co for the corresponding feature type is initialized 
to 1. If the feature point had been detected earlier, co is 
updated by adding 1 to the corresponding value of c in the
previous frame. The value of γ has been set to 50 in our 
implementation. 

B. Distance Calculation 
Relative distance determination of the features is 

essential for the purpose of localization. Inverse Perspective 
Mapping (IPM) [10], a geometrical transformation technique 
where the image is transformed from one perspective to 
another, can be used to generate a bird’s eye view of the 
image, thus removing the perspective effect. Application of 
IPM however, requires a rectilinear input image like in a 
pinhole camera. Therefore, the coordinates of the feature 
points need to be undistorted before the distance is estimated.
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There are several methods for undistorting the images 
captured using a fish-eye lens. Out of these, two of them 
have been considered in this work. First one assumes a 
simple barrel distortion and exploits this assumption to 
provide a geometric estimate for the undistorted coordinates 
[2]. The second method uses polynomial regression to map 
the distorted coordinates to the undistorted coordinates [1]. 

1) Barrel Distortion: In barrel distortion, the image 
magnification decreases as we move radially outward from 
the center of the image. This results in an image with an 
apparent spherical effect. The distortion correction algorithm 
assumes a simple barrel distortion and calculates the 
corrected image coordinates ݎሬሬ⃗  given the distorted image 
coordinates ݎௗሬሬሬ⃗ by the following equation:ݎሬሬ⃗ =  ሬሬሬሬሬ⃗ଵିఈ‖ሬሬሬሬሬ⃗ ‖మ                                  (2)

here ߙ  depends on the optical system and needs to be 
identified beforehand. The value of ߙ  used in our 
implementation for the camera setup explained in section III 
is approximately 8.1E-06. 

2) Polynomial Regression: Best possible camera to carry 
out quantitative measurements is the pinhole camera where 
the distances are calculated using the properties of similar 
triangles. In this technique, the coordinates in the fish-eye 
image are found. Then the respective pinhole camera 
coordinates are estimated. Finally polynomial regression is 
used to map the coordinates of the fish-eye image to the 
coordinates in the rectilinear image. It has been found 
experimentally [1] that polynomials of degree 5 and 7 
provide the best results. Since fish-eye lens has a distortion 
which is radial in nature, polar coordinates have been used to 
represent the various sample points. The mapping can be 
represented by the following equations: ݎ = ܽ + ܽଵݎௗ + ܽଶݎௗଶ + ܽଷݎௗଷ + ܽସݎௗସ + ܽହݎௗହ ߠ (3)  = ܾ + ܾଵߠௗ + ܾଶߠௗଶ + ܾଷߠௗଷ + ܾସߠௗସ + ܾହߠௗହ  (4) 

where the constants ܽ, … , ܽହ  and ܾ, … , ܾହ  are calculated 
using the techniques of polynomial regression. The values of 
constants calculated for our vision setup are shown in Table I. 
It is evident from the values calculated for (ܾ, … , ܾହ) that 
only the linear term (ܾଵ ) is significant. This demonstrates 
that the distortion is mainly in the radial direction and the 
angular distortion caused by the optics is negligible. This 
property enables us to detect features on the distorted image 
because the skew caused due to the angular distortion can be 
neglected. 

Both the techniques provide comparable results, however, 
the polynomial regression technique provides additional 
versatility, as we can change the complexity of the mapping 
model to make the polynomial function more flexible. For 
this reason, we have used the polynomial regression model in 
our implementation. 

TABLE I. POLYNOMIAL REGRESSION CONSTANTSݎ Values  Valuesܽ 0.0336ߠ ܾ 0.0001ܽଵ -1.6658 ܾଵ 0.9987ܽଶ 0.0759 ܾଶ 3.95E-17ܽଷ -0.0008 ܾଷ 5.27E-04ܽସ 3.61E-06 ܾସ -7.56E-18ܽହ -5.78E-09 ܾହ -3.87E-05

VI. LOCALIZATION

We have used Monte Carlo Localization (MCL) [11] for 
estimating the 3D pose of our robots. The pose is a tuple (ݔ, ,ݕ ,ݔ) where ,(ߠ  is the position of the robot in the field (ݕ
in Cartesian coordinates and ߠ is the orientation of the robot. 
The particle filter is updated at each frame using the Bayes’
theorem based on the combination of beliefs of both the 
motion model and the observation model. The motion model 
denotes the probability that the robot is in state ݔ௧ given that 
the robot executes an action ܽ௧ in state ݔ௧ିଵ and is updated at 
each frame by the walk module. The observation model is 
the likelihood that the robot makes observations ݖ௧ given that 
the robot is in stateݔ௧. It uses the identified landmarks and 
estimates the probability of a particular pose based on the 
distances measured to the said landmarks. 

Initially, a fixed number of particles (poses) ܰ are spread 
randomly throughout the field. At each frame, the 
observation model estimates the likelihood of a particle  by 
comparing the observed distance with the expected distance
using the following equation: 

()ܲ ∝  ෑ ݁∀∈
‖௦ି௦‖ଶఙమ                               (5)

here ݏ  and ݏ  are the expected and observed distances 
respectively. ߪଶ  is the variance of the distances between 
landmark ݈ and all the particles. ܮ is the set of all landmarks. 

The particles are then resampled using the ܲ  as the 
probability of selecting a particle. This process is repeated 
for each frame till the pose is stabilised. A few additional 
particles are added randomly in place of some particles at 
each frame in order to avoid the "kidnapped robot problem". 
If the pose certainty drops suddenly below a certain 
threshold, then additional particles are used to rectify the 
situation, by augmented MCL [12]. Since the RoboCup field 
has symmetric landmarks, the MCL algorithm identifies 2 
possible poses for the robot. One of the poses is eliminated 
using the yaw reading of the Inertial Measurement Unit 
(IMU). The yaw reading of the opponent's goal is fed into the 
robot prior to the match. Fig. 3 shows the localization 
estimate of the robot on a sample image. Only the field lines 
were used as the localization cues, the goal posts in yellow 
were not used in this illustration. 
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Figure 3. Localizing the robot in the field. (A) Features identified by the feature manager. Pink circles denote the feature points, blue circles represent the 
major nodes. (B) Localization estimate of the robot. The opponent’s goal is on the left hand side of the image. The localization estimate of the bot is shown 

in black. The orientation of the robot θ is depicted by the white arrow. 

VII. RESULTS

For comparing the results of the localization techniques, 
two situations were considered. In the first situation only the 
goal posts were used to localize the bot. In the second case 
only the field lines were used as localization cues. The field 
lines are meant to augment the localization along with the 
goal posts, for the purpose of comparison, only field lines 
were used to estimate the robot’s location in the field. In both 
the situations 200 particles were used in the particle filters. 
An IMU was used in both the cases in order to differentiate 
between the two halves of the field as the field is symmetric. 
20 random poses were considered on the field, 10 in our own 
half, the other 10 in the opponent’s half. Due to the 
symmetric nature of the field all the 20 poses were chosen 
such that the opponent’s goal post was visible to the robot. 

In case of goal post based localization 8 out of the 20 
poses were within 40cm of the ground truth. Out of these, 
majority of the cases were localized accurately when the goal 
posts were within 2 - 2.5m of the robot. This is because the 
distance estimate starts to become erroneous when point of 
interest is at the periphery of the camera frame. On the other 
hand when only field lines were used for the localization 17
out of 20 poses were within the stipulated error radius of 
40cm. One of the sample pose is shown in Fig. 3 along with 
the localization estimate. The black cluster of points in Fig. 
3B represent the position (ݔ,  of the robot and the white (ݕ
arrow represents its orientation ߠ . Table II reports the 
experimental results in an organized manner. 

TABLE II. EXPERIMENTAL RESULTS

Mode Number of Poses in Error Radius (40cm)

Own Half Opponent’s Half
Only goalposts 2 6
Only field lines 9 8

VIII. CONCLUSION

In this paper we have presented a new method of 
identifying the field lines by computing the node graph 
through a process of digestion. This method provides us 

additional landmarks that assist in the localization. We 
observed that the majority of errors in the belief occur due to 
the inaccuracies in the distance estimation using IPM due to 
the large curvature of the fish-eye lens. The use of field lines 
as landmarks help in mitigating these errors and provide 
additional landmarks to make the localization more robust. 
Currently the implementation is not optimized and uses a 
matrix to store the digestion weights. Our future works will 
include implementations which use the disjoint-set data 
structure for the process of digestion to reduce this overhead. 
As shown in Fig. 3A the computed node graph captures the 
structure of the field lines effectively. This information can 
be used for more complex feature detections like arcs in the 
central circle that can be used for the precise positioning of 
the robot. 
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